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Time-modulated oscillatory structures in phase-separating reactive mixtures

Singo Sugiura, Tohru Okuzono,* and Takao Ohta
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~Received 12 July 2002; revised manuscript received 21 October 2002; published 30 December 2002!

We investigate the effect of temporal modulation on the spatiotemporal patterns produced by phase separa-
tion in chemically reactive ternary mixtures. The temporal modulation is introduced by making one of the
reaction rates periodic in time. Our main concern is the stability of traveling waves, which appear above a
Hopf-type bifurcation at a finite wave number and are stable in the absence of external modulation. It is shown
by computer simulations in two dimensions that when the external modulation is present, various types of
coherent standing waves emerge near the special point in the parameter space, where the Turing-type bifurca-
tion line and the Hopf-type bifurcation line meet each other. We carry out a theoretical analysis to understand
the phase diagram of the synchronized oscillatory structures obtained numerically.
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I. INTRODUCTION

Pattern formation far from equilibrium has been studied
various macroscopic systems such as Rayleigh-Be´nard con-
vection and the Belousov-Zhabotinsky reaction@1#. How-
ever, recently, nonequilibrium dynamics in nanoscopic
mesoscopic structures have attracted much attention bec
of the technical control of domains in these length scales.
instance, it has been found that reactive adsorbates o
metal surface exhibit propagating and/or standing osc
tions of nanoscopic or mesoscopic domains@2,3#. Hildebrand
and co-workers@4,5# have introduced a model for the trav
eling nanoscale stripe structures in surface chemical r
tions and have successfully reproduced these dynamic
haviors by computer simulations. It is worth mentioning th
a traveling mesoscopic stripe pattern has also been obse
experimentally in Langmuir monolayers which under
trans-cis transformation under ultraviolet illuminations@6#.
Quite recently, this phenomenon has been studied theo
cally by introducing a set of model equations, which cont
a phase-separation mechanism@7#.

From these examples, it is noted that phase transit
play a central role in the formation of the self-organiz
dynamics of microscopic domains, which is a characteri
feature in the microscopic nonequilibrium phenome
Therefore this problem is not only relevant to industrial a
plication but also offers a new fundamental subject of sta
tical physics.

In our previous paper@8# which will be referred to as I,
we introduced a hypothetical reactive ternary mixture a
studied a self-organized propagation of phase-separated
mains. See also Ref.@9#. We consider a ternary mixture wit
the componentsA, B, andC, which undergo a chemical re
actionA→B→C→A. The reason for introducing this hypo
thetical cyclic linear reaction is that it is the simplest way
maintain the system far from equilibrium and hence m

*Present address: Yokoyama Nano-structured Liquid Cry
Project, ERATO, Japan Science and Technology Corporation,
9 Tokodai, Tsukuba 300-2635, Japan.
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convenient to explore the feature of nonequilibrium syste
without being involved heavily in mathematical complic
tion. The componentsA andB are assumed to be phase sep
rated at low temperature. This is modeled by the usual Ca
Hilliard-type equation which has been studied extensiv
for many years@10,11#.

The set of kinetic equations that consist of the Cah
Hilliard part and the reaction terms exhibits two kinds
bifurcation depending on the parameters. One is the Tur
type bifurcation beyond which the uniform stationary sta
becomes unstable, and motionless periodic domain struct
appear@12,13#. We do not call this bifurcation a Turing bi
furcation; we call it a Turing-type bifurcation, because t
original Turing bifurcation was introduced in a two
component reaction diffusion system@14#, which is not the
same as that studied in the present paper. The other
Hopf-type bifurcation at a finite wave number, which
sometimes called a wave instability@4#. Throughout this pa-
per, by a Hopf-type bifurcation, we mean a bifurcation as
ciated with the wave instability to distinguish it from th
ordinary Hopf bifurcation in a uniform system. We hav
found by computer simulations in two dimensions that bo
the stripe structure and hexagonal structure exhibit s
organized propagation at the post-threshold of the Hopf-t
bifurcation. However, we have not obtained any stand
oscillations of domains. This fact obtained numerically h
been confirmed theoretically in the case of stripes by de
ing the set of amplitude equations for traveling waves a
analyzing the stability@8#.

In this paper, we extend our previous study by allowing
time dependence of the reaction rates. Our main concer
how the traveling waves are destabilized by the exter
modulations and to see what kind of oscillations of doma
appear due to the synchronization with the external mod
tions.

The stability of traveling waves influenced by an extern
temporal modulation has been studied theoretically@15# to
understand the experimental observation in Rayleigh-Be´nard
convection of binary mixtures@16–18#. Control of Turing
structures by applying an external periodic disturbance
also been investigated both theoretically and experiment

al
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SUGIURA, OKUZONO, AND OHTA PHYSICAL REVIEW E66, 066216 ~2002!
in chemical reactions@19,20#. It is also mentioned that vari
ous types of standing oscillations of spatially periodic str
tures have been observed in vibrating granular systems
changing the amplitude and frequency of vibration@21#.

However, to our knowledge, there has been no intens
study of the nonequilibrium dynamical structures from t
view point of entrainment by external modulations. The p
pose of the present paper is to investigate the morpho
and dynamics of mesoscopic domains in a phase-sepa
system when the reaction rates are modulated periodical
time. We will show that a variety of domain dynamics can
obtained near the multiple bifurcation point where the Ho
type bifurcation line and the Turing-type bifurcation lin
meet each other.

In the following section, we shall describe our mod
equations for reactive ternary mixtures and summarize
previous results@8#. In Sec. III, we carry out computer simu
lations of the set of kinetic equations in two dimensions
introducing a time dependence of the reaction rates. A lin
stability analysis based on the Floquet theorem is given
Sec. IV for the uniformly oscillating state to understand t
phase diagram obtained by computer simulations. Conc
ing remarks and discussion are given in Sec. V.

II. CHEMICALLY REACTIVE TERNARY MIXTURES

We consider a ternary mixture composed ofA, B, andC
molecules and suppose that there is a strong repulsive s
range interaction betweenA andB species. The interaction
betweenA-C and B-C pairs are assumed to be sufficient
weak. Therefore this mixture is expected to undergo ph
separation betweenA-rich andB-rich domains at low tem-
peratures as an ordinary spinodal decomposition. The c
acteristic feature of the mixture is the presence of the follo
ing hypothetical reaction among the three components:

A→
g1

B→
g2

C→
g3

A, ~1!

whereg1 , g2, andg3 are the reaction rates.
Equation~1! is a simplified representation. It should b

noted that other chemical species are associated with th
actions such that, for example,A1D→B1E without violat-
ing any thermodynamic requirements. The amount of
speciesD andE is assumed to be controlled sufficiently fa
so that these are constant in space and time.

When the incompressibility condition with a proper no
malizationcA1cB1cC51 is imposed, two of these vari
ables are chosen to be independent, wherecX (X5A, B, and
C) is the local volume fraction of the componentX. Hence
we define the local kinetic variablesc(r ,t) and f(r ,t) at
position r and timet as c5cA2cB and f5cA1cB . The
kinetic equations for these variables are given by@8#

]c

]t
5¹2

dF

dc
1 f ~c,f!, ~2!

]f

]t
5g~c,f!, ~3!
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where F is the free-energy functional of the Ginzburg
Landau type given by

F5E dr FD

2
u“cu22

t

2
c21

1

4
c4G , ~4!

where D is a positive coefficient. The parametert is also
positive in the phase-separated state. The last terms of
~2! and ~3! arise from the chemical reaction~1!. From the
mass action law these terms are given by

f ~c,f!52S g11
g2

2 Dc2S g12
g2

2
1g3Df1g3 , ~5!

g~c,f!5
g2

2
c2S g2

2
1g3Df1g3 . ~6!

Note that the nonlinearity appears only through the free
ergy ~4! in the present model system.

We have made several simplifications for the tim
evolution equations~2! and~3! and the free energy~4!. First
of all, a possible coupling betweenc and f through, for
example, thef dependence oft in the free energy has bee
omitted. Second, the gradient term off is also not consid-
ered in the free energy. Finally the diffusion term has be
ignored in Eq.~3!. The Cahn-Hilliard-type equation with a
additive term~2! is responsible for the formation of motion
less periodic structures@12,13#. We have indeed verified nu
merically that the diffusion off does not affect qualitatively
the dynamics of patterns@8#. Therefore, we believe that thes
simplifications would not alter the results obtained, sin
phase separation and the cyclic reaction are most impor
for the self-organized propagation of domains.

The stationary uniform solutionsc0 and f0 for Eqs. ~2!
and ~3! are given, respectively, by

c05
g3~g22g1!

g1g21g2g31g3g1
, ~7!

f05
g3~g21g1!

g1g21g2g31g3g1
. ~8!

The linear stability diagram for these solutions is shown
the t-g2 plane in Fig. 1 forD51, g150.3, andg350.05
@8#. The solid line is an instability line where the eigenval
for the linearized equation is complex and the real part v
ishes at a certain finite wave number of the deviations.
mentioned in the Introduction, we call this a Hopf-type b
furcation throughout this paper. Another instability occu
along the dashed line such that the eigenvalue is real an
changes sign at a certain finite wave number. This bifurca
is called a Turing-type bifurcation to distinguish it from th
ordinary Turing instability@14#.

Now we impose the time dependence of the reaction
g3 as

g3~ t !5ḡ31a sin~Vt !, ~9!
6-2
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TIME-MODULATED OSCILLATORY STRUCTURES IN . . . PHYSICAL REVIEW E66, 066216 ~2002!
wherea andV are the amplitude and the frequency of mod
lation, respectively. We are concerned with how the osci
tion of phase-separated domains is affected by this temp
modulation. The reason why the reaction rateg3 is made
time dependent comes from the fact that it is most con
nient to traverse periodically the Hopf-type and Turing-ty
instability regions and the uniform state, as will be shown
the following section.

III. NUMERICAL SIMULATIONS

We have carried out computer simulations of Eqs.~2! and
~3! with Eq. ~9! in two dimensions. The system is discretiz
into 1283128 square cells. Each mesh sizedx is set asdx
50.5. In most of simulations, the time incrementdt is set to
bedt50.001. We have employed the Euler scheme for co
putation by verifying the accuracy by changingdt. The pe-
riodic boundary conditions are imposed at the system bou
aries. We start with the initial conditions such thatc andf
are distributed at each mesh point randomly in the inter
60.01 around the average valuesc0 andf0.

We have explored the domain oscillation by changing
parameters systematically and have found that the mos
teresting dynamics appears near the multiple bifurca
point indicated in Fig. 2, where the Turing-type bifurcatio
line ~the dashed line! and the Hopf-type bifurcation line~the
solid line! meet each other. The domain dynamics near
multiple bifurcation point have been studied numerically in
slightly different parameter space in a previous paper@8#.

In order to make the present paper self-contained, we
scribe here some of the results without external modulatio
We have carried out simulations along the dotted line in F
2 for t52.134 and forg350.05, 0.1, 0.12, 0.1236, 0.13
0.15, 0.2, and 0.25. The asymptotic domain dynamics ar
follows. Wheng350.05, we have propagating stripes. F
g350.1 an oscillation of domains is observed. What happ
in this case is a periodic appearance of the three dom

FIG. 1. Bifurcation diagram in the (g2 ,t) plane forD51, g1

50.3, andg350.05. The solid and dashed lines show, respectiv
the lines at which the Hopf-type and Turing-type instabilities occ
The units of the horizontal and vertical axes are dimensionles
this and all the figures below.
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patterns as shown in Fig. 3. Forg350.12, a traveling hex-
agonal structure appears. When the value ofg3 is increased
further, we have motionless hexagons. These are obta
starting with the initial conditions mentioned above. We ha
also carried out simulations using a different condition. Th
is, we start with the asymptotic stripe pattern forg350.05
and then increaseg3 to see the asymptotic structure repe
ing this up tog350.25. This procedure has also been p
formed by decreasingg3 from 0.25 to 0.05. The obtained
asymptotic dynamics is essentially the same for the t
methods. This indicates that any bistability of the solutio
i.e., coexistence of the different solutions, is quite unlike
near the multiple bifurcation point. We have confirmed th
property even for the higher value oft52.143.

In the simulations shown below in the presence of
external modulation, the parameters are fixed asg150.6,
g250.4, andt52.125. The constant partḡ3 and the ampli-
tude a in Eq. ~9! are chosen such that, the system is in t
uniform stable state when the external modulation is abs
and enters into the Turing-type instability region and t
Hopf-type instability region periodically in time when th
modulation is present as shown by the arrows in Fig. 2. I
noted that when the external modulation is turned off, a s
tionary hexagonal structure of domains exists in the Turi
type instability region, whereas traveling stripe doma
emerge in the Hopf-type instability region.

,
.
in

FIG. 2. Bifurcation diagram in the (g3 ,t) plane forD51, g1

50.6, andg250.4. The dot shows the stable uniform state atḡ3

50.146 58 andt52.125. The arrows indicates the temporal chan
of the time-dependentg3. The dotted line is the line fort
52.134, which is close to the multiple bifurcation point.

FIG. 3. Snapshots of the domain att548 690 ~a!, 48 695~b!,
and 48 705~c! for t52.134,g150.6, g250.4, andg350.1. These
patterns appear periodically. In these snapshots as well as in t
in the figures below, the region wherec is large~small! is shown by
white ~black!.
6-3
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Figure 4 is the phase diagram in theV-a space obtained
numerically for the fixed valueḡ350.146 58. In the area
indicated by the white circles, the uniform oscillation wi
no spatial structure appears. The temporal changes ofc and
f are displayed in Fig. 5 together with the external modu
tion g3(t). It is evident thatf exhibits an almost in-phas
oscillation withg3(t), whereas the phase difference betwe
c andg3(t) is aboutp/2. Note that the critical frequency a
the Hopf-type bifurcation line is given byvc50.15 with this
set of parameters. Therefore the phase diagram implies
the external temporal modulation suppresses the trave
waves and the spatial structures when the modulation
quency is sufficiently large.

By decreasing the value ofV for a fixed value of the

FIG. 4. Phase diagram in the space of the frequencyV and the
amplitudea of the external modulation. Other parameters are se

be g150.6, g250.4, ḡ350.146 58, andt52.125. The white
circles indicate the region where the system is entrained by
external modulation but without any spatial structures. In the reg
of the black disks an oscillating stripe structure appears. At
parameters shown by the black squares, the stripe is not straigh
bended. Oscillations of hexagons appear in the regions of both
white triangles and the black triangles. A more complicated dom
oscillation appears in the region of the white squares. See the
for the ratio of the oscillating frequency of domains to the exter
frequencyV.

FIG. 5. The temporal changes ofc ~lower line!, f ~upper line!,
andg3(t) ~middle line! at the center of the system when the syst
is uniformly entrained by the external modulation.
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amplitudea, spatially periodic structures appear and the
patterns are synchronized with the external oscillation
g3(t). In the region indicated by the black disks in Fig. 4, w
have a standing wave of stripe domain pattern. Figure 6
plays the behavior of oscillation during two cycles of th
external modulation. Here it is emphasized that the f
quencyv of the domain oscillation is related with that of th
external modulation asv/V51/2. That is, after one cycle
the system returns to the stripe pattern but there is an
tiphase relation with the initial stripes. In one more cycle
oscillation, the pattern becomes identical with the origin
structure.

If the external frequency is decreased further, i.e., for
parameters indicated by the white triangles in Fig. 4,
asymptotic domain pattern changes from the stripe patter
the hexagonal one, which exhibits a standing oscillation
shown in Fig. 7. The period of oscillation in this case is a
twice the external period. The reason why the morpholog
change occurs by changing only the frequency origina
from the fact that, as mentioned above, hexagonal and lam
lar structures exist above the Turing-type and Hopf-type
furcations, respectively, in the absence of the external os
lation. However, it is noted that the dynamical behavior
quite different from the simple expectation that the hexa
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n
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FIG. 6. Snapshots of the standing oscillation of stripes at
52210 ~a!, 2244 ~b!, 2262 ~c!, 2296 ~d!, and 2310~e! for a
50.08 andV50.12. The panels from~a! to ~c! and ~c! to ~e!
correspond to one cycle ofg3. Note that the stripes~c! are spatially
antiphase compared to those of~a! so that one cycle of domain
oscillation is completed from~a! to ~e!.

FIG. 7. Snapshots of the oscillating hexagons att52220 ~a!,
2262 ~b!, 2298 ~c!, 2340 ~d!, and 2376~e! for a50.08 andV
50.08. The figures from~a! to ~c! and~c! to ~e! correspond to one
cycle ofg3. Note that the hexagons~c! are spatially antiphase com
pared to~a! so that one cycle of domain oscillation is complet
from ~a! to ~e!.
6-4
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TIME-MODULATED OSCILLATORY STRUCTURES IN . . . PHYSICAL REVIEW E66, 066216 ~2002!
nal pattern appears wheng3 is large, whereas the stripe pa
tern appears wheng3 is small. In fact, Figs. 6 and 7 indicat
that both stripe and hexagonal patterns appear in the inte
when the reaction rateg3 is large. This implies that the ratio
of the characteristic time of domain evolution in the abse
of the external modulation to the residence time in the pr
ence of the external modulation plays a crucial role in th
domain oscillations. A mathematical formulation of this
however, beyond the scope of the present study.

When the frequencyV of the external modulation is
smaller than about 0.055 fora50.08, the oscillatory behav
ior changes qualitatively. At the parameters indicated by
black triangles, the oscillation of hexagons is entrained
the external modulation. In this case, however, the period
the domain oscillation turns out to be equal to that of
external modulation. From the time evolution of doma
shapes shown in Fig. 8, one notes that the center of gra
of each hexagon does not move but only the amplitude of
structure oscillates coherently with the external modulati

These two different oscillations of hexagons witho
propagation can be expressed by the following equations
assuming a sinusoidal spatiotemporal evolution which
found to be a good approximation in the present simulatio
The case of Fig. 7 is given by

c5c01Ah~r !cos~Vt1c!, ~10!

whereas the motion shown in Fig. 8 is expressed as

c5c01Ah~r !cos2~Vt1c!, ~11!

wherec0 , A, andc are constants and

h~r !5cos~q1•r !1cos~q2•r !1cos~q3•r !, ~12!

FIG. 9. Snapshots of the oscillating domains att52320 ~a!,
2402 ~b!, 2478 ~c!, 5780 ~d!, 5854 ~e!, and 5938~f!, for a50.08
andV50.04. Panels~a!, ~b!, and~c! show the evolution during one
cycle of the external modulation and panels~d!, ~e!, and~f! display
the evolution of another cycle of modulation.

FIG. 8. Snapshots of the standing oscillation of hexagonst
52600~a!, 2654~b!, and 2704~c! for a50.08 andV50.06 having
the frequency ratiov/V51.
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with qn (n51,2,3) the fundamental reciprocal lattice vecto
of the hexagonal pattern.

In the parameter region indicated by the white square
Fig. 4, a complicated dynamical behavior appears. After o
cycle of the external modulation, the domain pattern alm
recovers the original one. For a long interval, however, s
eral different patterns emerge and disappear without any
parent regularity. An example is displayed in Fig. 9 whe
pattern evolution in one period at two different times is d
played. The time evolutions ofc andf at the center of the
system are plotted in Fig. 10. It seems that the system is
synchronized completely with the external modulation.
order to examine the time evolution shown in Fig. 10
greater detail, we have plotted in Fig. 11 the values ofc and
f at everyT period of the external modulation. The da
points are found to be accumulated on a line, indicating t
the evolution is not chaotic. It is more likely that the temp
ral change of these quantities is quasiperiodic.

Before closing this section, we show an example of d
main oscillation away from the multiple bifurcation poin
Figure 12 displays the traveling hexagons modulated by
periodic external disturbance where the parameters are

FIG. 10. The temporal changes ofc ~lower line!, f ~upper line!,
and g3(t) ~middle line! for a50.08 andV50.04 at the center of
the system.

FIG. 11. Poincare´ map of (c,f) every one period ofg3(t) at
the instant that it takes the maximum value. The data points co
from t5628 to 9896. Other parameters are set asg150.6, g2

50.4, a50.08, andV50.04.
6-5
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sen ast52.1, g150.6, g250.2, ḡ350.1, a50.08, andV
50.12. As displayed in Fig. 12, the traveling hexagons
not destabilized away from the multiple bifurcation point b
their amplitudes are simply modulated.

IV. THEORETICAL ANALYSIS

In order to understand the results obtained by simulatio
we here make a theoretical analysis of the evolution eq
tions ~2! and ~3!. A uniform solution of Eqs.~2! and ~3!
satisfies the following set of equations,

]c

]t
52S g11

g2

2 Dc2Fg12
g2

2
1g3~ t !Gf1g3~ t !,

~13!

]f

]t
5

g2

2
c2Fg2

2
1g3~ t !Gf1g3~ t !. ~14!

Equations~13! and ~14! have an asymptotically periodic so
lution c5c0(t) and f5f0(t) as t→` with the periodT
[2p/V. We have verified numerically that this solution
indeed the stable solution of Eqs.~13! and ~14!.

We are concerned with the stability of the uniformly o
cillating solutionc0(t) andf0(t) when spatially nonuniform

FIG. 12. Hexagons traveling to the lower right corner under
external modulation att59650 ~a!, 9682 ~b!, and 9700~c! for t

52.1, g150.6, g250.2, ḡ350.1, a50.08, andV50.12.
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perturbations are present. We introduce the deviati
c1(r ,t) andf1(r ,t) around the uniform periodic solutions a

c~r ,t !5c0~ t !1c1~r ,t !, ~15!

f~r ,t !5f0~ t !1f1~r ,t !, ~16!

and write c1(r ,t)5a(t)exp(iq•r ) and f1(r ,t)
5b(t)exp(iq•r ). Substituting these into Eqs.~2! and~3!, we
obtain, up to the linear order ofx[„a(t),b(t)…T,

dx

dt
5Lq~ t !x, ~17!

where

FIG. 13. Phase diagram in theV-a plane obtained theoretically
The black squares indicate the region where the real part of
eigenvalue is larger than 1 in one period of the external modulat
whereas the white squares indicate the region where the eigenv
exceeds unity after two periods of the external modulation.

e

Lq~ t ![S 2Dq41tq223c0
2~ t !q22g12

g2

2
2g11

g2

2
2g3~ t !

g2

2
2

g2

2
2g3~ t !

D . ~18!
e
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n
-
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Let us introduce a fundamental solution matrixX(t)
[(x1 ,x2) in terms of the independent solutionsx1 andx2 of
Eq. ~17!. X(t) obeys

dX

dt
5Lq~ t !X. ~19!

SinceLq(t) is T periodic, the solutionX(t) must satisfy

X~ t1T!5MX~ t !. ~20!

The 232 matrix M is formally defined by

M5T expF E
t

t1T

Lq~s!dsG , ~21!
where T exp@ # is the time-ordered exponential. We hav
solved Eqs.~13!, ~14!, and~19! numerically by changing the
wave numberq to evaluate each component of the matrixM
and its eigenvalues. If the real part of the eigenvalue is lar
than 1 for some finite interval ofq, the recurrence equatio
~20! means thatX(t) is divergent, indicating that the uni
formly oscillating solution is unstable. This actually happe
with the parameters shown by the black squares in Fig.
where the eigenvalue becomes larger than 1 in one perio
the external modulation. This corresponds to the region in
cated by the white squares and the black triangles in Fig
The region of the white squares in Fig. 13 is a region wh
the eigenvalue is smaller than unity after one period,
exceeds unity after two periods. This corresponds to the
gion shown by the white triangles and the black disks in F
4. The region with no symbols in Fig. 13 is the region whe
6-6
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TIME-MODULATED OSCILLATORY STRUCTURES IN . . . PHYSICAL REVIEW E66, 066216 ~2002!
the real part of the eigenvalue is always smaller than 1
hence the uniform solution is stable. Therefore, compar
Figs. 13 and 4, one notes that the theoretical results on
frequency of oscillations are in an almost complete agr
ment with the simulations.

V. DISCUSSION AND CONCLUDING REMARKS

We have investigated dynamics of phase-separated
mains in reactive mixtures. The cyclic chemical reacti
makes the system out of equilibrium and the traveling wa
of domains are self-organized when no external modula
is applied. Our main concern in the present paper was
study the synchronization of self-organized patterns by
plying time-modulated reaction rates. Synchronization is o
of the major problems far from equilibrium. Many theore
cal and experimental studies have been available for osc
tory systems such as nonlinear coupled oscillators, the c
plex Ginzburg-Landau-type amplitude equations@22#, the
Belousov-Zhabotinsky reaction under illumination@19#, and
the electrohydrodynamics instabilities in nematic liquid cry
tals @23#.

However, most of the previous studies dealt with syste
having no spatial structures@24# or, at most, Turing pattern
@19#. In the present study, we have investigated the entr
ment of dynamic mesoscopic structures under time mod
tion. Although our kinetic equations are based on hypoth
cal chemical reactions with phase separation, the mo
system can produce not only traveling stripes but also tr
tl,

tt.
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el
v-

eling hexagons when the external modulation is absent@8#.
Therefore it is mostly convenient to study the effect of t
modulation systematically for all the dynamic patterns,
least, in two dimensions. In fact, the main result in t
present paper is that various dynamics due to synchron
tion emerge near the multiple bifurcation point where t
Hopf-type bifurcation line and the Turing-type bifurcatio
line meet each other.

We have also investigated the effects of the exter
modulations in other parameter regions such that the sys
crosses periodically the Hopf-type bifurcation line or t
Turing-type bifurcation line. However, we have found th
traveling stripes and hexagons are not destabilized but
shown in Fig. 12, those amplitudes are simply modulated
these situations.

The linear stability analysis of the uniformly oscillatin
solution has successfully accounted for the change of
frequency ratio obtained by numerical simulations. One
the remaining problems is the morphological change fr
lamellar to hexagonal patterns by decreasing the external
quency. We intend to return to this problem in the future.
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