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Time-modulated oscillatory structures in phase-separating reactive mixtures
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We investigate the effect of temporal modulation on the spatiotemporal patterns produced by phase separa-
tion in chemically reactive ternary mixtures. The temporal modulation is introduced by making one of the
reaction rates periodic in time. Our main concern is the stability of traveling waves, which appear above a
Hopf-type bifurcation at a finite wave number and are stable in the absence of external modulation. It is shown
by computer simulations in two dimensions that when the external modulation is present, various types of
coherent standing waves emerge near the special point in the parameter space, where the Turing-type bifurca-
tion line and the Hopf-type bifurcation line meet each other. We carry out a theoretical analysis to understand
the phase diagram of the synchronized oscillatory structures obtained numerically.
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I. INTRODUCTION convenient to explore the feature of nonequilibrium systems
without being involved heavily in mathematical complica-
Pattern formation far from equilibrium has been studied intion. The componentd andB are assumed to be phase sepa-
various macroscopic systems such as RayleighaB# con- rated at low temperature. This is modeled by the usual Cahn-
vection and the Belousov-Zhabotinsky reactid]. How-  Hilliard-type equation which has been studied extensively
ever, recently, nonequilibrium dynamics in nanoscopic offor many yearg10,11.
mesoscopic structures have attracted much attention becauseThe set of kinetic equations that consist of the Cahn-
of the technical control of domains in these length scales. FoHilliard part and the reaction terms exhibits two kinds of
instance, it has been found that reactive adsorbates on [@#furcation depending on the parameters. One is the Turing-
metal surface exhibit propagating and/or standing oscillatype bifurcation beyond which the uniform stationary state
tions of nanoscopic or mesoscopic domd®g]. Hildebrand  becomes unstable, and motionless periodic domain structures
and co-workerg4,5] have introduced a model for the trav- appear{12,13. We do not call this bifurcation a Turing bi-
eling nanoscale stripe structures in surface chemical reagurcation; we call it a Turing-type bifurcation, because the
tions and have successfully reproduced these dynamic beriginal Turing bifurcation was introduced in a two-
haviors by computer simulations. It is worth mentioning thatcomponent reaction diffusion systeih4], which is not the
a traveling mesoscopic stripe pattern has also been observedme as that studied in the present paper. The other is a
experimentally in Langmuir monolayers which undergoHopf-type bifurcation at a finite wave number, which is
trans-cis transformation under ultraviolet illuminatior6. sometimes called a wave instabiliig#]. Throughout this pa-
Quite recently, this phenomenon has been studied theoretper, by a Hopf-type bifurcation, we mean a bifurcation asso-
cally by introducing a set of model equations, which containciated with the wave instability to distinguish it from the
a phase-separation mechanigm ordinary Hopf bifurcation in a uniform system. We have
From these examples, it is noted that phase transitionfound by computer simulations in two dimensions that both
play a central role in the formation of the self-organizedthe stripe structure and hexagonal structure exhibit self-
dynamics of microscopic domains, which is a characteristiorganized propagation at the post-threshold of the Hopf-type
feature in the microscopic nonequilibrium phenomenabifurcation. However, we have not obtained any standing
Therefore this problem is not only relevant to industrial ap-oscillations of domains. This fact obtained numerically has
plication but also offers a new fundamental subject of statisheen confirmed theoretically in the case of stripes by deriv-
tical physics. ing the set of amplitude equations for traveling waves and
In our previous papel8] which will be referred to as I, analyzing the stability8].
we introduced a hypothetical reactive ternary mixture and In this paper, we extend our previous study by allowing a
studied a self-organized propagation of phase-separated dime dependence of the reaction rates. Our main concern is
mains. See also Ref]. We consider a ternary mixture with how the traveling waves are destabilized by the external
the component#, B, andC, which undergo a chemical re- modulations and to see what kind of oscillations of domains
actionA—B—C—A. The reason for introducing this hypo- appear due to the synchronization with the external modula-
thetical cyclic linear reaction is that it is the simplest way totions.
maintain the system far from equilibrium and hence most The stability of traveling waves influenced by an external
temporal modulation has been studied theoreticgl] to
understand the experimental observation in RayleighaB
*Present address: Yokoyama Nano-structured Liquid Crystatonvection of binary mixture§l6—18. Control of Turing
Project, ERATO, Japan Science and Technology Corporation, 5-structures by applying an external periodic disturbance has
9 Tokodai, Tsukuba 300-2635, Japan. also been investigated both theoretically and experimentally
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in chemical reactionf19,20. It is also mentioned that vari- where F is the free-energy functional of the Ginzburg-
ous types of standing oscillations of spatially periodic strucLandau type given by
tures have been observed in vibrating granular systems by
changing the amplitude and frequency of vibratj@i].

However, to our knowledge, there has been no intensive F:J’ dr
study of the nonequilibrium dynamical structures from the

view point of entrainment by external modulations. The pur-ynhereD is a positive coefficient. The parameteris also

pose of the present paper is to investigate the morphologyositive in the phase-separated state. The last terms of Egs.
and dynamics of mesoscopic domains in a phase-separates) 5nq (3) arise from the chemical reactiofi). From the
system when the reaction rates are modulated periodically i,5ss action law these terms are given by
time. We will show that a variety of domain dynamics can be
obtained near the multiple bifurcation point where the Hopf-
type bifurcation line and the Turing-type bifurcation line f(y,p)=—
meet each other.

In the following section, we shall describe our model
equations for reactive ternary mixtures and summarize the 72
previous result§s]. In Sec. lll, we carry out computer simu- 9 )= 5 o=
lations of the set of kinetic equations in two dimensions by
introducing a time dependence of the reaction rates. A lineaKote that the nonlinearity appears only through the free en-
stability analysis based on the Floquet theorem is given irergy (4) in the present model system.
Sec. IV for the uniformly oscillating state to understand the We have made several simplifications for the time-
phase diagram obtained by computer simulations. Concludevolution equation$2) and(3) and the free energgs). First
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ing remarks and discussion are given in Sec. V. of all, a possible coupling betweey and ¢ through, for
example, thep dependence of in the free energy has been
Il. CHEMICALLY REACTIVE TERNARY MIXTURES omitted. Second, the gradient term ¢fis also not consid-
] _ ered in the free energy. Finally the diffusion term has been
We consider a ternary mixture composed/ofB, andC  ignored in Eq.(3). The Cahn-Hilliard-type equation with an

molecules and suppose that there is a strong repulsive shodyditive term(2) is responsible for the formation of motion-
range interaction betweeh andB species. The interactions |ess periodic structurdd2,13. We have indeed verified nu-
betweenA-C andB-C pairs are assumed to be sufficiently merically that the diffusion oty does not affect qualitatively
weak. Therefore this mixture is expected to undergo phasge dynamics of patterr8]. Therefore, we believe that these
separation betweeA-rich andB-rich domains at low tem-  gimpjifications would not alter the results obtained, since

peratures as an ordinary spinodal decomposition. The chaghase separation and the cyclic reaction are most important
acteristic feature of the mixture is the presence of the followtg; the self-organized propagation of domains.

ing hypothetical reaction among the three components: The stationary uniform solutiong, and ¢, for Egs. (2)
and(3) are given, respectively, by

Y1 72 3
A—B—C—A, (1)
_ va(y2— v1) %)
wherey,, y,, andy; are the reaction rates. O yivet vavat yvavs
Equation(1) is a simplified representation. It should be
noted that other chemical species are associated with the re- Ya(y2+ v1)
actions such that, for exampl&;+ D— B+ E without violat- $o T Y2t vavat vars’ 8

ing any thermodynamic requirements. The amount of the
speciedD andE is assumed to be controlled sufficiently fast
so that these are constant in space and time.

When the incompressibility condition with a proper nor-
malization ¢+ g+ =1 is imposed, two of these vari-
ables are chosen to be independent, whigréX=A, B, and
C) is the local volume fraction of the componeXit Hence
we define the local kinetic variableg(r,t) and ¢(r,t) at
positionr and timet as ¢y=p— g and ¢= o+ 5. The
kinetic equations for these variables are given &y

The linear stability diagram for these solutions is shown in
the -y, plane in Fig. 1 forD=1, y,;=0.3, andy3=0.05

[8]. The solid line is an instability line where the eigenvalue
for the linearized equation is complex and the real part van-
ishes at a certain finite wave number of the deviations. As
mentioned in the Introduction, we call this a Hopf-type bi-
furcation throughout this paper. Another instability occurs
along the dashed line such that the eigenvalue is real and it
changes sign at a certain finite wave number. This bifurcation
is called a Turing-type bifurcation to distinguish it from the

Y

_:V2f+f(¢ ) 2) ordinary Turing instability{ 14].
ot oy T Now we impose the time dependence of the reaction rate
V3 as
i 3
gt~ 9P, &) ¥3(t) = yz+asin(Qt), C)
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FIG. 1. Bifurcation diagram in they;,7) plane forD=1, y, FIG. 2. Bifurcation diagram in theys,7) plane forD=1, y;

=0.3, andy;=0.05. The solid and dashed lines show, respectively,=0.6, andy,=0.4. The dot shows the stable uniform stateyat
the lines at which the Hopf-type and Turing-type instabilities occur.=0.146 58 and-=2.125. The arrows indicates the temporal change
The units of the horizontal and vertical axes are dimensionless inf the time-dependenty;. The dotted line is the line forr
this and all the figures below. =2.134, which is close to the multiple bifurcation point.

wherea and() are the amplitude and the frequency of modu-patterns as shown in Fig. 3. Feg=0.12, a traveling hex-
lation, respectively. We are concerned with how the oscilla-agonal structure appears. When the valueypfs increased
tion of phase-separated domains is affected by this temporélirther, we have motionless hexagons. These are obtained
modulation. The reason why the reaction ratgis made Starting with the initial conditions mentioned above. We have
time dependent comes from the fact that it is most convealso carried out simulations using a different condition. That
nient to traverse periodically the Hopf-type and Turing-typeis, we start with the asymptotic stripe pattern fpy=0.05
instability regions and the uniform state, as will be shown inand then increase; to see the asymptotic structure repeat-
the following section. ing this up toy3=0.25. This procedure has also been per-
formed by decreasing; from 0.25 to 0.05. The obtained
asymptotic dynamics is essentially the same for the two
methods. This indicates that any bistability of the solutions,

We have carried out computer simulations of E@.and ie., coexistenpe of. the d?fferenF solutions, is quit.e unlike!y
(3) with Eq. (9) in two dimensions. The system is discretized "€&" the multiple b|furc_at|on point. We have confirmed this
into 128x 128 square cells. Each mesh sizeis set asox ~ Property even for the higher value of=2.143.
=0.5. In most of simulations, the time incremetis set to In the simulations shown below in the presence of the
be 5t=0.001. We have employed the Euler scheme for com&Xternal modulation, the parameters are fixedyas 0.6,
putation by verifying the accuracy by changing The pe- ¥2=0.4, andr=2.125. The constant past; and the ampli-
riodic boundary conditions are imposed at the system boundudea in Eq. (9) are chosen such that, the system is in the
aries. We start with the initial conditions such thaand ¢ uniform stable state when the external modulation is absent,
are distributed at each mesh point randomly in the intervafnd enters into the Turing-type instability region and the
+0.01 around the average valugs and ¢y. Hopf-type instability region periodically in time when the

We have explored the domain oscillation by changing thenodulation is present as shown by the arrows in Fig. 2. It is
parameters Systematica"y and have found that the most |rp.0ted that when the external modulation is turned Oﬁ:, a sta-
teresting dynamics appears near the multiple bifurcatiodionary hexagonal structure of domains exists in the Turing-
point indicated in Fig. 2, where the Turing-type bifurcation type instability region, whereas traveling stripe domains
line (the dashed lineand the Hopf-type bifurcation linghe ~ emerge in the Hopf-type instability region.
solid line) meet each other. The domain dynamics near the
multiple bifurcation point have been studied numerically in a V
slightly different parameter space in a previous pdgegr

In order to make the present paper self-contained, we de- %
scribe here some of the results without external modulations.

We have carried out simulations along the dotted line in Fig. b

2 for 7=2.134 and fory;=0.05, 0.1, 0.12, 0.1236, 0.13,  [iG. 3. Snapshots of the domain tat 48 690 (a), 48 695 (b),

0.15, 0.2, and 0.25. The asymptotic domain dynamics are agd 48 705c) for r=2.134, y,=0.6, y,=0.4, andy;=0.1. These
follows. When y;=0.05, we have propagating stripes. For patterns appear periodically. In these snapshots as well as in those
v3=0.1 an oscillation of domains is observed. What happens the figures below, the region whegeis large(smal) is shown by

in this case is a periodic appearance of the three domaiwhite (black.

IlI. NUMERICAL SIMULATIONS
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FIG. 6. Snapshots of the standing oscillation of striped at

. . . . . =2210 (a), 2244 (b), 2262 (c), 2296 (d), and 2310(e) for a
0 0.05 0.1 0.15 0.2 0.25 0.3 =0.08 andQ=0.12. The panels fronta) to (c) and (c) to (e
Q correspond to one cycle af;. Note that the stripe&) are spatially

) ] antiphase compared to those @) so that one cycle of domain
FIG. 4. Phase diagram in the space of the frequeda@nd the  qcillation is completed fronta) to ().

amplitudea of the external modulation. Other parameters are set to

be y,=0.6, y,=0.4, y3=0.14658, andr=2.125. The white amplitudea, spatially periodic structures appear and these
circles indicate the region where the system is entrained by theaiiems are synchronized with the external oscillation of
external modulation but without any spatial structures. In the regio l-(1). In the region indicated by the black disks in Fig. 4, we

of the black disks an oscillating stripe structu_re appears. At theh ve a standing wave of stripe domain pattern. Figure 6 dis-
parameters shown by the black squares, the stripe is not straight bu . S .
ays the behavior of oscillation during two cycles of the

bended. Oscillations of hexagons appear in the regions of both th - o .
white triangles and the black triangles. A more complicated domainexternal modulation. Here it is emphasized that the fre-

oscillation appears in the region of the white squares. See the tefuency® of the domain oscillation is related with that of the

for the ratio of the oscillating frequency of domains to the external€Xtérnal modulation a&/=1/2. That is, after one cycle
frequency. the system returns to the stripe pattern but there is an an-

tiphase relation with the initial stripes. In one more cycle of
oscillation, the pattern becomes identical with the original
structure.

If the external frequency is decreased further, i.e., for the
parameters indicated by the white triangles in Fig. 4, the

. L . asymptotic domain pattern changes from the stripe pattern to
¢ are displayed in Fig. 5 together with the external modu"""the hexagonal one, which exhibits a standing oscillation as

tion y5(t). Itis evident thate exhibits an almost in-phase g,y in Fig. 7. The period of oscillation in this case is also

oscillation withys(t), whereas the phase difference betweeny,;ce the external period. The reason why the morphological
¥ and y5(t) is aboutm/2. Note that the critical frequency at change occurs by changing only the frequency originates
the Hopf-type bifurcation line is given by, =0.15 with this 5y the fact that, as mentioned above, hexagonal and lamel-
set of parameters. Therefore the phase diagram implies thaf, s ctures exist above the Turing-type and Hopf-type bi-
the external temporal modulation suppresses the traveling caiions, respectively, in the absence of the external oscil-

waves and the spatial structures when the modulation fréion. However, it is noted that the dynamical behavior is

quency is sufficiently large. _ quite different from the simple expectation that the hexago-
By decreasing the value d for a fixed value of the

0

Figure 4 is the phase diagram in tilea space obtained
numerically for the fixed valuey;=0.14658. In the area
indicated by the white circles, the uniform oscillation with
no spatial structure appears. The temporal changesafd

>(30.2
<
>

SV ANVANYAVAYAN

-0.20 = 00 % 200 FIG. 7. Snapshots of the oscillating hexagong=a£220 (a),
time 2262 (b), 2298 (c), 2340 (d), and 2376(e) for a=0.08 and(}
=0.08. The figures fronfa) to (c) and(c) to (e) correspond to one
FIG. 5. The temporal changes @f(lower line), ¢ (upper ling, cycle of y;. Note that the hexagoris) are spatially antiphase com-
and y;(t) (middle line at the center of the system when the systempared to(a) so that one cycle of domain oscillation is completed
is uniformly entrained by the external modulation. from (a) to (e).
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=02 |
FIG. 8. Snapshots of the standing oscillation of hexagorts at < IV ! w' x’, ]
=2600(a), 2654(b), and 2704(c) for a=0.08 and(2 =0.06 having >
the frequency ratiaw/Q=1. |

[=]

. . 0.2
nal pattern appears whep is large, whereas the stripe pat-
tern appears whefi; is small. In fact, Figs. 6 and 7 indicate 0 1000 2000 3000 4000 5000 6000
that both stripe and hexagonal patterns appear in the interval time

when the reactic_)n.rat_% is large. This impli_es t_hat the ratio FIG. 10. The temporal changes sf(lower line), ¢ (upper ling,
of the characteristic time of domain evolution in the absence,q ¥5(t) (middle ling for a=0.08 and=0.04 at the center of

of the external modulation to the residence time in the presge gystem.
ence of the external modulation plays a crucial role in these
domain oscillations. A mathematical formulation of this is,
however, beyond the scope of the present study.

When the frequency} of the extemal modulation is In the parameter region indicated by the white squares in
smaller than about 0.055 fer=0.08, the oscillatory behav- _. P . 9 : y q
Fig. 4, a complicated dynamical behavior appears. After one

lor changes qualitatively. At the parameters indicated by theCycle of the external modulation, the domain pattern almost

black triangles, the oscillation of hexagons is entrained by L .
ecovers the original one. For a long interval, however, sev-

the external modulation. In this case, however, the period of ) . .
eral different patterns emerge and disappear without any ap-

the domain oscillation turns out to be equal to that of the . . -
external modulation. From the time evolution of domainparent feg“'af"y- .An example IS d|splayed In F_|g. 9 yvhgre
. attern evolution in one period at two different times is dis-

shapes shown in Fig. 8, one notes that the center of gravitg ) .
of each hexagon does not move but only the amplitude of thsl?{gg{ ;Ze tllcr)TtZ de\i/r?lIL:j:IOnlSOQllftasré(l(rf]:il’fgtetﬁinstegtgfﬁ:rzg not
structure oscillates coherently with the external modulation. y rep g. 1% ySter
These two different oscillations of hexagons WithoutsygChronlzecj comprl1etely with tlhe exterr1nal modulatlono. In
- : : order to examine the time evolution shown in Fig. 10 in
propagation can be expressed by the following equations b reater detail, we have plotted in Fig. 11 the values/@d

assuming a sinusoidal spatiotemporal evolution which i . .
found to be a good approximation in the present simulations?’S at everyT period of the external modqlatlo_n. _The data
points are found to be accumulated on a line, indicating that

Th f Fig. 7 is given o ) : .
e case of Fig. 7 is given by the evolution is not chaotic. It is more likely that the tempo-

with g, (n=1,2,3) the fundamental reciprocal lattice vectors
of the hexagonal pattern.

= o+ Ah(r)cog Qt+c), (100 ral change of these quantities is quasiperiodic.
_ o _ Before closing this section, we show an example of do-
whereas the motion shown in Fig. 8 is expressed as main oscillation away from the multiple bifurcation point.

Figure 12 displays the traveling hexagons modulated by the

= 1ho+ Ah(r)cog(Qt+c), (D) periodic external disturbance where the parameters are cho-
wherey, A, andc are constants and -
0.54}
h(r)=cogq,-r)+cogd,-r)+cogqs-r), (12
0.52}
o
®
05¢ ®
& | N4
0.48}
0.46}
o”
N - 0.44 ; . - :
(d) (e) (f) -0.2 -0.15 -0.1 -0.05 0 0.05

FIG. 9. Snapshots of the oscillating domainstat2320 (a), A
2402 (b), 2478 (c), 5780 (d), 5854 (e), and 5938(f), for a=0.08 FIG. 11. Poincaranap of (,¢) every one period ofys(t) at
andQ =0.04. Panelsa), (b), and(c) show the evolution during one the instant that it takes the maximum value. The data points cover
cycle of the external modulation and panédy (e), and(f) display  from t=628 to 9896. Other parameters are setyas-0.6, 7y,
the evolution of another cycle of modulation. =0.4,a=0.08, and2=0.04.
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FIG. 12. Hexagons traveling to the lower right corner underthe g ogl gmmmmoocooooooooooo

external modulation at=9650 (a), 9682 (b), and 9700(c) for 7 3 EEEEREOO0O0O0O0O0OO0OOO0
=21, 9,=0.6, 7,=0.2, y3=0.1,a=0.08, and2=0.12. 006 mmmm0O000000000
mEmm O0OOOO0O0O0O0
0.04 oooo

sen asr=2.1, y;=0.6, y,=0.2, ')’3 0.1, a=0.08, and(}

=0.12. As displayed in Fig. 12, the traveling hexagons are 0.02}

not destabilized away from the multiple bifurcation point but 0 . ) ) ) )

their amplitudes are simply modulated. 0 0.05 0.1 0.15 0.2 0.25 0.3
Q

FIG. 13. Phase diagram in tlf&-a plane obtained theoretically.
In order to understand the results obtained by simulationsThe black squares indicate the region where the real part of the

we here make a theoretical analysis of the evolution equaelgenvalue is larger than 1 in one period of the external modulation,
tions (2) and (3). A uniform solution of Egs.(2) and (3) whereas the white squares indicate the region where the eigenvalue

IV. THEORETICAL ANALYSIS

satisfies the following set of equations, exceeds unity after two periods of the external modulation.
Yy Vs Vo perturbations are present. We introduce the deviations
T ( Nt ) P [ 1~ 5 T ya(t)| @+ ys(D), 1(r,t) and¢4(r,t) around the uniform periodic solutions as
(13 P(r 0= dho() + ¢ (1,1), (15
O ey | 24 ()| 8 st (19 B(r,0= bo(V) + (1, 1), (16

and write  q(r,t)=a(t)expig-r) and @y(r,t)
Equations(13) and(14) have an asymptotically periodic so- =8(t)exp(q-r). Substituting these into Eq&) and(3), we
lution = io(t) and ¢= po(t) ast—oo with the periodT ~ obtain, up to the linear order o= (a(t),B(t))",
=27/Q). We have verified numerically that this solution is dx
indeed the stable solution of Eq4.3) and (14). T Lqy(D)x, (17
We are concerned with the stability of the uniformly os-
cillating solutionyy(t) and ¢q(t) when spatially nonuniform  where

|
Y Y
~DQ*+ 707 - 3YH(0P -y 5 vt~ va(t)
Lq(t)= . (18

Y2 Y2
> -5 y3(t)

Let us introduce a fundamental solution matriX(t) where 7 exd ] is the time-ordered exponential. We have
=(X1,X,) in terms of the independent solutiorsandx, of  solved Eqs(13), (14), and(19) numerically by changing the
Eq. (17). X(t) obeys wave numben to evaluate each component of the matvix
and its eigenvalues. If the real part of the eigenvalue is larger
than 1 for some finite interval af, the recurrence equation
(20) means thatX(t) is divergent, indicating that the uni-
formly oscillating solution is unstable. This actually happens
with the parameters shown by the black squares in Fig. 13,
where the eigenvalue becomes larger than 1 in one period of
the external modulation. This corresponds to the region indi-
cated by the white squares and the black triangles in Fig. 4.
The region of the white squares in Fig. 13 is a region where
The 2x2 matrix M is formally defined by the eigenvalue is smaller than unity after one period, but
T exceeds unity after two periods. This corresponds to the re-
M:Texr{Jt Ly(s)ds|,

X_
Sp =La(OX. (19

SinceL 4(t) is T periodic, the solutiorX(t) must satisfy

X(t+T)=MX(t). (20)

(21)  9ion shown by the white triangles and the black disks in Fig.
4. The region with no symbols in Fig. 13 is the region where
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the real part of the eigenvalue is always smaller than 1 anéling hexagons when the external modulation is abs&ht
hence the uniform solution is stable. Therefore, comparind herefore it is mostly convenient to study the effect of the
Figs. 13 and 4, one notes that the theoretical results on thmodulation systematically for all the dynamic patterns, at
frequency of oscillations are in an almost complete agreeleast, in two dimensions. In fact, the main result in the
ment with the simulations. present paper is that various dynamics due to synchroniza-
tion emerge near the multiple bifurcation point where the
Hopf-type bifurcation line and the Turing-type bifurcation

) _ ) line meet each other.

We have investigated dynamics of phase-separated do- we have also investigated the effects of the external
mains in reactive mixtures. The cyclic chemical reactionmoduylations in other parameter regions such that the system
makes the system out of equilibrium and the traveling waveg gsses periodically the Hopf-type bifurcation line or the
of domains are self-organized when no external modulatioRyring-type bifurcation line. However, we have found that
is applied. Our main concern in the present paper was tgayeling stripes and hexagons are not destabilized but, as
study the synchronization of self-organized patterns by apshown in Fig. 12, those amplitudes are simply modulated in
plying time-modulated reaction rates. Synchronization is ongnhese situations.
of the major problems far from equilibrium. Many theoreti-  Tne jinear stability analysis of the uniformly oscillating
cal and experimental studies have been available for oscillasg|ytion has successfully accounted for the change of the
tory systems such as nonlinear coupled oscillators, the comrequency ratio obtained by numerical simulations. One of

V. DISCUSSION AND CONCLUDING REMARKS

plex Ginzburg-Landau-type amplitude equatidi&2], the
Belousov-Zhabotinsky reaction under illuminatift®], and

the remaining problems is the morphological change from
lamellar to hexagonal patterns by decreasing the external fre-

tals[23].

However, most of the previous studies dealt with systems

having no spatial structur¢®4] or, at most, Turing patterns
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